0%

数据结构 B树和B+树

介绍了 B 树和 B+ 树的定义及操作,并对比了两者之间的特点。

B树

B 树也称 B- 树,它是一颗多路平衡查找树。二叉树我想大家都不陌生,其实,B 树和后面讲到的 B+ 树也是从最简单的二叉树变换而来的,下面我们来看看 B 树的定义()。

假设有 m 阶的 B 树,阶数表示了一个节点最多有多少个孩子节点。

  • 每个节点最多有 m-1 个关键字(可以存有的键值对)。
  • 根节点最少可以只有 1 个关键字
  • 非根节点至少有 m/2 个关键字
  • 每个节点中的关键字都按照从小到大的顺序排列,每个关键字的左子树中的所有关键字都小于它,而右子树中的所有关键字都大于它。
  • 所有叶子节点都位于同一层,或者说根节点到每个叶子节点的长度都相同。
  • 每个节点都存有索引和数据,也就是对应的 key 和 value。

所以,根节点的关键字数量范围:1 <= k <= m-1,非根节点的关键字数量范围:m/2 <= k <= m-1

我们再举个例子来说明一下上面的概念,比如这里有一个5阶的B树,根节点数量范围:1 <= k <= 4,非根节点数量范围:2 <= k <= 4。

B树的插入操作

插入的时候,我们需要记住一个规则:判断当前结点 key 的个数是否小于等于 m-1,如果满足,直接插入即可,如果不满足,将节点的中间的 key 将这个节点分为左右两部分,中间的节点放到父节点中即可。

例子:在 5 阶 B 树中,结点最多有 4 个 key,最少有 2 个 key(注意:下面的节点统一用一个节点表示 key 和 value)。

  • 插入18,70,50,40

  • 插入22

插入 22 时,发现这个节点的关键字已经大于 4 了,所以需要进行分裂,分裂的规则在上面已经讲了,分裂之后,如下。

  • 接着插入23,25,39

分裂,得到下面的。

更多的插入的过程就不多介绍了,相信有这个例子你已经知道怎么进行插入操作了。

B树的删除操作

B 树的删除操作相对于插入操作是相对复杂一些的,但是,你知道记住几种情况,一样可以很轻松的掌握的。

  • 现在有一个初始状态是下面这样的B树,然后进行删除操作。

  • 删除15,这种情况是删除叶子节点的元素,如果删除之后,节点数还是大于m/2,这种情况只要直接删除即可。

  • 接着,我们把22删除,这种情况的规则:22是非叶子节点,对于非叶子节点的删除,我们需要用后继key(元素)覆盖要删除的key,然后在后继key所在的子支中删除该后继key。对于删除22,需要将后继元素24移到被删除的22所在的节点。

此时发现26所在的节点只有一个元素,小于2个(m/2),这个节点不符合要求,这时候的规则(向兄弟节点借元素):如果删除叶子节点,如果删除元素后元素个数少于(m/2),并且它的兄弟节点的元素大于(m/2),也就是说兄弟节点的元素比最少值m/2还多,将先将父节点的元素移到该节点,然后将兄弟节点的元素再移动到父节点。这样就满足要求了。

我们看看操作过程就更加明白了。

  • 接着删除28,删除叶子节点,删除后不满足要求,所以,我们需要考虑向兄弟节点借元素,但是,兄弟节点也没有多的节点(2个),借不了,怎么办呢?如果遇到这种情况,首先,还是将先将父节点的元素移到该节点,然后,将当前节点及它的兄弟节点中的key合并,形成一个新的节点

移动之后,跟兄弟节点合并。

删除就只有上面的几种情况,根据不同的情况进行删除即可。

B+树

B+ 树其实和 B 树是非常相似的。

相同点

  • 根节点至少一个元素
  • 非根节点元素范围:m/2 <= k <= m-1

不同点

  • B+ 树有两种类型的节点:内部结点(也称索引结点)和叶子结点。内部节点就是非叶子节点,内部节点不存储数据,只存储索引,数据都存储在叶子节点。
  • 内部结点中的 key 都按照从小到大的顺序排列,对于内部结点中的一个 key,左树中的所有 key 都小于它,右子树中的 key 都大于等于它。叶子结点中的记录也按照 key 的大小排列。
  • 每个叶子结点都存有相邻叶子结点的指针,叶子结点本身依关键字的大小自小而大顺序链接。
  • 父节点存有右孩子的第一个元素的索引。

下面我们看一个 B+ 树的例子,感受感受它吧!

B+树的插入操作

对于插入操作很简单,只需要记住一个技巧即可:当节点元素数量大于 m-1 的时候,按中间元素分裂成左右两部分,中间元素分裂到父节点当做索引存储,但是,本身中间元素还是分裂右边这一部分的

下面以一颗 5 阶 B+ 树的插入过程为例,5 阶 B+ 树的节点最少 2 个元素,最多 4 个元素。

  • 插入5,10,15,20

  • 插入25,此时元素数量大于4个了,分裂

  • 接着插入26,30,继续分裂

有了这几个例子,相信插入操作没什么问题了,下面接着看看删除操作。

B+树的删除操作

对于删除操作是比B树简单一些的,因为叶子节点有指针的存在,向兄弟节点借元素时,不需要通过父节点了,而是可以直接通过兄弟节移动即可(前提是兄弟节点的元素大于 m/2 ),然后更新父节点的索引;如果兄弟节点的元素不大于 m/2(兄弟节点也没有多余的元素),则将当前节点和兄弟节点合并,并且删除父节点中的 key,下面我们看看具体的实例。

  • 初始状态

  • 删除10,删除后,不满足要求,发现左边兄弟节点有多余的元素,所以去借元素,最后,修改父节点索引

  • 删除元素5,发现不满足要求,并且发现左右兄弟节点都没有多余的元素,所以,可以选择和兄弟节点合并,最后修改父节点索引

  • 发现父节点索引也不满足条件,所以,需要做跟上面一步一样的操作