0%

在第五章中,我们讨论了复制——即数据在不同节点上的副本,对于非常大的数据集,或非常高的吞吐量,仅仅进行复制是不够的:我们需要将数据进行分区(partitions),也称为分片(sharding)i

i. 正如本章所讨论的,分区是一种有意将大型数据库分解成小型数据库的方式。它与 网络分区(network partitions, netsplits) 无关,这是节点之间网络故障的一种。我们将在第八章讨论这些错误。

术语澄清

上文中的分区(partition),在MongoDB,Elasticsearch和Solr Cloud中被称为分片(shard),在HBase中称之为区域(Region),Bigtable中则是 表块(tablet),Cassandra和Riak中是虚节点(vnode),Couchbase中叫做虚桶(vBucket)。但是分区(partitioning) 是最约定俗成的叫法。

通常情况下,每条数据(每条记录,每行或每个文档)属于且仅属于一个分区。有很多方法可以实现这一点,本章将进行深入讨论。实际上,每个分区都是自己的小型数据库,尽管数据库可能支持同时进行多个分区的操作。

分区主要是为了可伸缩性。不同的分区可以放在不共享集群中的不同节点上(请参阅第二部分关于无共享架构。因此,大数据集可以分布在多个磁盘上,并且查询负载可以分布在多个处理器上。

对于在单个分区上运行的查询,每个节点可以独立执行对自己的查询,因此可以通过添加更多的节点来扩大查询吞吐量。大型,复杂的查询可能会跨越多个节点并行处理,尽管这也带来了新的困难。

分区数据库在20世纪80年代由Teradata和NonStop SQL【1】等产品率先推出,最近因为NoSQL数据库和基于Hadoop的数据仓库重新被关注。有些系统是为事务性工作设计的,有些系统则用于分析(请参阅“事务处理还是分析”):这种差异会影响系统的运作方式,但是分区的基本原理均适用于这两种工作方式。

在本章中,我们将首先介绍分割大型数据集的不同方法,并观察索引如何与分区配合。然后我们将讨论分区再平衡(rebalancing),如果想要添加或删除集群中的节点,则必须进行再平衡。最后,我们将概述数据库如何将请求路由到正确的分区并执行查询。

Read more »

复制意味着在通过网络连接的多台机器上保留相同数据的副本。做出复制数据的行为,可能出于各种各样的原因:

  • 使得数据与用户在地理上接近(从而减少延迟)
  • 即使系统的一部分出现故障,系统也能继续工作(从而提高可用性)
  • 伸缩可以接受读请求的机器数量(从而提高读取吞吐量)

本章将假设你的数据集非常小,每台机器都可以保存整个数据集的副本。在第六章中将放宽这个假设,讨论对单个机器来说太大的数据集的分割(分片)。在后面的章节中,我们将讨论复制数据系统中可能发生的各种故障,以及如何处理这些故障。

如果复制中的数据不会随时间而改变,那复制就很简单:将数据复制到每个节点一次就万事大吉。复制的困难之处在于处理复制数据的变更(change),这就是本章所要讲的。我们将讨论三种流行的变更复制算法:单领导者(single leader)多领导者(multi leader)无领导者(leaderless)。几乎所有分布式数据库都使用这三种方法之一。

在复制时需要进行许多权衡:例如,使用同步复制还是异步复制?如何处理失败的副本?这些通常是数据库中的配置选项,细节因数据库而异,但原理在许多不同的实现中都类似。本章会讨论这些决策的后果。

数据库的复制算得上是老生常谈了 ——70年代研究得出的基本原则至今没有太大变化【1】,因为网络的基本约束仍保持不变。然而在研究之外,许多开发人员仍然假设一个数据库只有一个节点。分布式数据库变为主流只是最近发生的事。许多程序员都是这一领域的新手,因此对于诸如 最终一致性(eventual consistency) 等问题存在许多误解。在“复制延迟问题”一节,我们将更加精确地了解最终的一致性,并讨论诸如 读己之写(read-your-writes)单调读(monotonic read) 保证等内容。

Read more »

应用程序不可避免地随时间而变化。新产品的推出,对需求的深入理解,或者商业环境的变化,总会伴随着功能(feature) 的增增改改。第一章介绍了可演化性(evolvability) 的概念:应该尽力构建能灵活适应变化的系统(请参阅“可演化性:拥抱变化”)。

在大多数情况下,修改应用程序的功能也意味着需要更改其存储的数据:可能需要使用新的字段或记录类型,或者以新方式展示现有数据。

我们在第二章讨论的数据模型有不同的方法来应对这种变化。关系数据库通常假定数据库中的所有数据都遵循一个模式:尽管可以更改该模式(通过模式迁移,即ALTER语句),但是在任何时间点都有且仅有一个正确的模式。相比之下,读时模式(schema-on-read)(或 无模式(schemaless))数据库不会强制一个模式,因此数据库可以包含在不同时间写入的新老数据格式的混合(请参阅 “文档模型中的模式灵活性” )。

当数据格式(format)模式(schema) 发生变化时,通常需要对应用程序代码进行相应的更改(例如,为记录添加新字段,然后修改程序开始读写该字段)。但在大型应用程序中,代码变更通常不会立即完成:

  • 对于 服务端(server-side) 应用程序,可能需要执行 滚动升级 (rolling upgrade) (也称为 阶段发布(staged rollout) ),一次将新版本部署到少数几个节点,检查新版本是否运行正常,然后逐渐部完所有的节点。这样无需中断服务即可部署新版本,为频繁发布提供了可行性,从而带来更好的可演化性。
  • 对于 客户端(client-side) 应用程序,升不升级就要看用户的心情了。用户可能相当长一段时间里都不会去升级软件。

这意味着,新旧版本的代码,以及新旧数据格式可能会在系统中同时共处。系统想要继续顺利运行,就需要保持双向兼容性

向后兼容 (backward compatibility)

​ 新代码可以读旧数据。

向前兼容 (forward compatibility)

​ 旧代码可以读新数据。

向后兼容性通常并不难实现:新代码的作者当然知道由旧代码使用的数据格式,因此可以显示地处理它(最简单的办法是,保留旧代码即可读取旧数据)。

向前兼容性可能会更棘手,因为旧版的程序需要忽略新版数据格式中新增的部分。

本章中将介绍几种编码数据的格式,包括 JSON,XML,Protocol Buffers,Thrift和Avro。尤其将关注这些格式如何应对模式变化,以及它们如何对新旧代码数据需要共存的系统提供支持。然后将讨论如何使用这些格式进行数据存储和通信:在Web服务中,表述性状态传递(REST)远程过程调用(RPC),以及消息传递系统(如Actor和消息队列)。

Read more »

一个数据库在最基础的层次上需要完成两件事情:当你把数据交给数据库时,它应当把数据存储起来;而后当你向数据库要数据时,它应当把数据返回给你。

作为程序员,需要关心数据库内部存储与检索的机理,从许多可用的存储引擎中选择一个合适的。而且为了协调存储引擎以适配应用工作负载,你也需要大致了解存储引擎在底层究竟做什么。特别需要注意,针对事务性负载和分析性负载优化的存储引擎之间存在巨大差异。稍后我们将在 “事务处理还是分析?” 一节中探讨这一区别,并在 “列存储”中讨论一系列针对分析优化存储引擎。

但是,我们将从您最可能熟悉的两大类数据库:传统关系型数据库与很多所谓的“NoSQL”数据库开始,通过介绍它们的存储引擎来开始本章的内容。我们会研究两大类存储引擎:日志结构(log-structured) 的存储引擎,以及面向页面(page-oriented) 的存储引擎(例如B树)。

Read more »

数据模型可能是软件开发中最重要的部分了,因为它们的影响如此深远:不仅仅影响着软件的编写方式,而且影响着我们的解题思路

多数应用使用层层叠加的数据模型构建。对于每层数据模型的关键问题是:它是如何用低一层数据模型来表示的?例如:

  1. 作为一名应用开发人员,你观察现实世界(里面有人员,组织,货物,行为,资金流向,传感器等),并采用对象或数据结构,以及操控那些数据结构的API来进行建模。那些结构通常是特定于应用程序的。
  2. 当要存储那些数据结构时,你可以利用通用数据模型来表示它们,如JSON或XML文档,关系数据库中的表、或图模型。
  3. 数据库软件的工程师选定如何以内存、磁盘或网络上的字节来表示JSON/XML/关系/图数据。这类表示形式使数据有可能以各种方式来查询,搜索,操纵和处理。
  4. 在更低的层次上,硬件工程师已经想出了使用电流,光脉冲,磁场或者其他东西来表示字节的方法。

一个复杂的应用程序可能会有更多的中间层次,比如基于API的API,不过基本思想仍然是一样的:每个层都通过提供一个明确的数据模型来隐藏更低层次中的复杂性。这些抽象允许不同的人群有效地协作(例如数据库厂商的工程师和使用数据库的应用程序开发人员)。

数据模型种类繁多,每个数据模型都带有如何使用的设想。有些用法很容易,有些则不支持如此;有些操作运行很快,有些则表现很差;有些数据转换非常自然,有些则很麻烦。

掌握一个数据模型需要花费很多精力(想想关系数据建模有多少本书)。即便只使用一个数据模型,不用操心其内部工作机制,构建软件也是非常困难的。然而,因为数据模型对上层软件的功能(能做什么,不能做什么)有着至深的影响,所以选择一个适合的数据模型是非常重要的。

Read more »

现今很多应用程序都是 数据密集型(data-intensive) 的,而非 计算密集型(compute-intensive) 的。因此CPU很少成为这类应用的瓶颈,更大的问题通常来自数据量、数据复杂性、以及数据的变更速度。

数据密集型应用通常由标准组件构建而成,标准组件提供了很多通用的功能;例如,许多应用程序都需要:

  • 存储数据,以便自己或其他应用程序之后能再次找到 (数据库(database)
  • 记住开销昂贵操作的结果,加快读取速度(缓存(cache)
  • 允许用户按关键字搜索数据,或以各种方式对数据进行过滤(搜索索引(search indexes)
  • 向其他进程发送消息,进行异步处理(流处理(stream processing)
  • 定期处理累积的大批量数据(批处理(batch processing)

如果这些功能听上去平淡无奇,那是因为这些 数据系统(data system) 是非常成功的抽象:我们一直不假思索地使用它们并习以为常。绝大多数工程师不会幻想从零开始编写存储引擎,因为在开发应用时,数据库已经是足够完美的工具了。

但现实没有这么简单。不同的应用有着不同的需求,因而数据库系统也是百花齐放,有着各式各样的特性。实现缓存有很多种手段,创建搜索索引也有好几种方法,诸如此类。因此在开发应用前,我们依然有必要先弄清楚最适合手头工作的工具和方法。而且当单个工具解决不了你的问题时,组合使用这些工具可能还是有些难度的。

Read more »

Servlet 3.0 规范新增了对异步请求的支持,Spring MVC 也在此基础上对异步请求提供了方便。异步请求是在处理比较耗时的业务时先将 request 返回,然后另起线程处理耗时的业务,处理完后再返回给用户。

Read more »

数据绑定这个概念在任何一个成型的框架中都是特别重要的,它能让框架更多的自动化,更好容错性以及更高的编码效率。它提供的能力是:把字符串形式的参数转换成服务端真正需要的类型的转换(当然还包含校验)。对 Spring 中的数据绑定场景,Controller 中只需要使用 Model 对象就能完成 request 到 Model 对象的自动数据自动绑定,完全屏蔽了 Servlet 的 API。

Read more »

Spring 类型转换框架经过了几个版本的演进,由 PropertyEditor Framework 转变为 Converter Framework + Formatter Framework 的形式,其为 SpringMVC 的字段转换提供了丰富的功能,保证了在 Web 字段处理的安全、高效进行。

Read more »